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LETTER TO THE EDITOR 

On surface ACAR spectra calculated within the mixed-density 
approximation 

Anna Rubaszek 
Institute for Low Temperature and Structure Research, Polish Academy of Sciences, 
PO Box 937, PL-50 950 Wrodaw 2 ,  Poland 

Received 6 January 1989 

Abstract. Various approaches to the surface problem that enable us to calculate angular 
correlation of annihilation radiation (ACAR) spectra are discussed. The validity of the mixed- 
density approximation (MDA) in the neighbourhood of metal surfaces is investigated. For 
positrons trapped at the AI surface the MDA gives results that strongly disagree with those 
obtained using the exact ACAR formula. A new formula for use in calculating surface ACAR 
spectra, allowing avoidance of this deficiency of the MDA, is proposed. 

The isotropic shape of experimental spectra of angular correlation of annihilation radi- 
ation (ACAR) from clean Al(100) surfaces, measured by Lynn et al (1985) using a slow 
positron beam, gave an impetus for intensive theoretical work aimed at explaining this 
unexpected feature (Brown et a1 1987,1988, Lou 1988, Rubaszek and Lach 1989a, b). 
The ACAR spectra are defined by 

wherep is the momentum of the annihilating electron-positron pair, I)iP(x,, xp) denotes 
the pair wavefunction of a (thermalised) positron located at xp and an electron (in the 
initial state k)  at x,. The summation in (1) is over all occupied electronic states k .  

The one-dimensional distributions of annihilating pairs are given by 
r r  

J J  

where pz is assumed to be perpendicular to the sample. 
The wavefunctions I ) i P  in formula (1) are dependent on the unperturbed electron 

wavefunctions of the material investigated, I)jlok(r), the positron wavefunction, q+(r) ,  
and the strong electron-positron correlations, f(r, k ) ,  in the following manner: 

ViP(r,r)  =f ( r ,k )  Vjlok(4 I)+(r)* (3) 
When the electron-positron correlationsf are known, the momentum distribution given 
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provides useful information about the electronic structure of the material investigated 
(determined by the functions vi) .  In particular, the slow positron beam, because of its 
small implantation depth, looks promising as a tool for probing electronic properties of 
metal surfaces. 

The main problem, not solved until now, consists in the proper determination of the 
correlation functionf(r, k) in the neighbourhood of a metal surface. In order to calculate 
surface ACAR spectra from formula (4), three different approximations have been pro- 
posed by authors of theoretical work. 

The first of these approximations is the independent-particles model (IPM), com- 
pletely neglecting electron-positron correlations, i.e. assuming f ( r ,  k )  1. Within the 
IPM, formula (4) reduces to the well known equation 

Within the jellium model, where 

qk(r) = exp[i(kxx + kyy ) l  q k Z ( z )  (6a) 

v + ( r )  = v + ( z )  (6b) 
formula ( 5 )  simplifies to 

2 

NIPM@) = 1 k z s k 2 -  2 -  2 dkz ~ ~ e i p ~ ~ ~ ~ ~ ( z ) ~ + ( z ) d z i  . (5a) 
F PX PY 

It should be pointed out that using the IPM is rather controversial for the surface 
problem. In the neighbourhood of a metal surface the electron density rapidly decreases 
and therefore the effect of electron-positron correlations should be pronounced 
(Arponen and Pajanne 1979, Lowy 1982, Rubaszek and Stachowiak 1988). On the other 
hand, the conclusions for the bulk material could not be valid for the metal surface, 
where the electronic screening charge distribution loses its spherically symmetric shape 
and, far from the surface, becomes detached (Inglesfield and Stott 1980, Jensen and 
Walker 1988). Using the electron and positron model (and, resulting from this, the 
electron and positron wavefunctions q k z  and ?)I+), and using formula (5a), some authors 
obtained almost isotropic ACAR spectra from an A1 surface (Lou 1988, Brown et a1 1988), 
whilein othercases (Browneta11987, Rozenfeldetall983, RubaszekandLach 1989a, b) 
the IPM yields anisotropic spectra (this anisotropy varies from 10 to 50%). 

Let us discuss the possibilities for full isotropy of IPM surface ACAR spectra calculated 
according to formula (5a). It is most convenient to use the autocorrelation function B(r)  
defined as the inverse Fourier transform of N ( p ) ,  i.e. 

(P) dP (7) B I P M ( ~ )  = p n )  -3 e-ip.rNIPM ! 
= (2n)-3 I qk(r l )q+(r l )qz( r -  r l ) q + ( r - r l ) d r l  

kocc 

The equality of the one-dimensional distributions N ( p x )  and N(p , )  is equivalent to the 
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equality of the corresponding inverse Fourier transforms--B'PM(z, 0,O) and 
BIPM(O, 0, z ) ,  respectively. This means that for any z the expression 

2 I d 2 1  vk*,(Z1)v'(zl)(vkz(Z + z1)v+(z + 21) - eik~zvk,(Z1)v++zl)) 
kow 

is exactly equal to zero. This condition is undoubtedly satisfied in the bulk material, 
where v k Z  (z) = eikzz. For the metal surfaces the problem is more complicated and the 
results are dependent on translational properties of electron and positron wavefunctions 
perpendicular to the surface. The (exponential) tails of N(p , )  for p z  > kF could also 
reproduce small differences between B(z, 0 0) and B(0, 0, z). 

Another approach (Rubaszek and Lach 1989a, b) is based on the local density 
approximation (LDA), introduced by Daniuk eta1 (1985,1987). The correlation function 
f ( r ,  k)  in (4) is assumed to be equal to q w ,  where the ~ ( p ,  r,) are the momentum- 
dependent electron-positron enhancement factors obtained within the self-consistent 
Kahana approach (Rubaszek and Stachowiak 1988) and r,(r) corresponds to the local 
electron density p(r ) .  The main advantage of this theory is that it allowed us to obtain a 
reversal of the direction of the anisotropy of the ACAR spectra for the A1 surface (with 
N(p , )  broader by about 9% than N ( p , ) ) ,  in agreement with the experimental result of 
Lynn et a1 (1985). The deficiency of the LDA consists in the overestimation of ~ ( p ,  r,) for 
the surface problem, causing too strong a narrowing of the ACAR spectra. Self-consistent 
Kahana theory, giving good agreement with experiment for bulk material, should be 
modified for metal surfaces. This is, however, very difficult from the conceptual point 
of view, mainly because of the violation of the periodicity conditions perpendicular to 
the surface. 

The mixed-density approximation (MDA), recently quite frequently applied (Brown 
et a1 1987,1988), is the most controversial way of calculating surface ACAR spectra. The 
main deficiency of this approach is the disagreement with the exact ACAR formula (4) in 
the case of metal surfaces, whatever electron-positron correlations are used (the MDA 
is valid only for bulk material), as will be shown below. Within the MDA the momentum 
distribution of annihilating pairs is calculated according to the formula 

X exp[ik ( r  - r , ) ]  dk I,<,,,, 
where R = ( r  + r1)/2, kF(R) is the local Fermi momentum, and T [ p ( r ) ]  is the positron 
annihilation rate, dependent on the local electron density p ( r )  = k$(r) /3n2.  

Two disadvantages of the MDA should be discussed. The first is connected with 
the divergence of the overlap integral in (8) for R,+ cc if the annihilation rate r 
corresponding to the bulk material is applied. For R, + 00, p ( R )  + 0, T(p)  is convergent 
to 2 X lo9 s-l ,  while kF(R) + 0 and the whole expression diverges. In order to avoid this 
divergence, Brown et a1 (1987, 1988) imposed an unphysical cut-off in r, assuming 
T [ p ( R ) ]  = 0 for R, > z, for some arbitrary z,. Such a cut-off is difficult to substantiate 
on physical grounds because the assumption that = 0 means that the positron is not 
only bare (as it really occurs far from the surface) but also that there are no electrons at 
all in its neighbourhood, i.e. that the positron repels electrons instead of attracting them. 
Moreover, the resulting ACAR spectra appeared to be strongly dependent on the cut-off 
position z, (Brown et a1 1987). If any cut-off is to be used, I suggest using the approxi- 
mation (more easy to substantiate on physical grounds) rIPM[p(r)] = nr icp ( r )  = 
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Figure 1.One-dimensional momentum distributions of annihilating pairs from an AI surface 
obtained within the IPM from definition (5a) (full curves) and according to the MDA formula 
(Sa) (broken curves). 

16np(r) X lo9 s-l  for r, > zo,  where zo  is the point of intersection of the image with 
correlation positron potentials. This modification allows one to avoid the divergence of 
(8) and is based only on the assumption that the positron is not screened far from the 
surface (Inglesfield and Stott 1980, Jensen and Walker 1988, Brown et a1 1988). The 
problem of the cut-off in the annihilation rate could be easily avoided if instead of using 
the annihilation rate corresponding to a bulk material, the proper surface values were 
used (Jensen and Walker 1988). 

The second deficiency of the MDA, namely the invalidity for the surface problem 
(whatever electron-positron correlations r are used), is much more serious. 

The simplest test for any approach enabling us to calculate N ( p )  is the IPM. Within 
theIPM the positronisnot screened andTIPM[p(R,)J = 16np(R,) = 16k;(Rz)/9n. Within 
the jellium model, with the IPM annihilation rate I-1PM, formula (8) takes the form 

N$EA(p) = j x  dR, lom d z l  ~ ~ s ( p , t ) v + ( R ,  + t /2 )q+(RZ - 2/2) sin(m)/z 

where K~ = k$(R , )  - p :  - p ; .  
In the present work the calculations of N(p, )  and N(p , )  were performed according 

to formulae (2), (5a) and (sa). The electron and positron wavefunctions, V k , ( z )  and 
q + ( z ) ,  were determined as described in the papers by Rubaszek and Lach (1989a, b). 
In figure 1 the results obtained according to the definition of momentum distribution 
given by (5a) are shown as full curves. The broken curves correspond to the MDA formula 
(sa). In the left-hand panel of figure 1 the momentum distributions parallel to the surface, 
N(p, ) ,  are presented; in the right-hand panel the N(p , )  are shown. In the case of N(p, )  
significant differences are visible, showing a lack of consistency between the MDA and 
the definition of ACAR spectra. Therefore, it is necessary to exercise a great deal of 
caution if drawing any conclusions concerning the shape of ACAR spectra from the metal 
surface when using the MDA (this approximation is reasonable only for bulk material and 
to some extent for distributions perpendicular to the surface, as is seen from the right- 
hand panel of figure 1). 

Let us explain this feature mathematically. Comparison of formulae (8) and (4) 
shows that the expression 

(sa) 
- m  

vmv,lj* P l l f ( T ,  klf"(r1, k) 
kocc 
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of definition (4) is in the MDA (equation (8)) replaced by 

This means that the MDA not only averages electron-positron correlations over electronic 
states k (which is very convenient) but also assumes electron wavefunctions in the form 
of plane waves. The latter assumption, valid in the bulk material, does not hold true 
in the neighbourhood of the surface. Perpendicularly to the surface the periodicity 
conditions are violated and electron wavefunctions &(r) are strongly dependent on the 
z position. This comparison allows us to understand why the MDA is valid in the bulk 
material and falls down for metal surfaces. The spectra, presented in the right-hand 
panel of figure 1, N(p,),  confirm these points. Parallel to the surface the wavefunctions 
?&(r) are assumed to be plane waves (cf (6a) and (6b))  and therefore differences between 
corresponding momentum distributions N(p,) are much smaller than in the case of 

Hence, we cannot use the ACAR spectra obtained according to (8) to extract infor- 
mation about the electronic structure of the surface of the material investigated, where 
the q&r) differ from plane waves. For this reason this method is not recommended for 
interpretation of experimental ACAR spectra. 

The IPM and LDA allow us to avoid both the problem of invalidity for metal surfaces 
and the divergence of N ( p ) ,  connected with the MDA (this is removable if a proper local 
annihilation rate r is used in (8)). In the case of the IPM (equation ( 5 ) )  the situation is 
clear. The LDA, which is obtained from expression (4) with f ( r ,  k )  = %'-, is 
convergent even if the E(P, r,(r)) corresponding to the bulk material are used (for more 
details see Rubaszek and Lach 1989a, b). If the local surface-momentum-dependent 
enhancement factors were known, using the LDA would provide the only reliable way 
of calculating surface ACAR spectra. However, as was mentioned, determining these 
parameters is very complicated. The electronic cloud screening a positron surface 
becomes detached from the positron, creating a classical image charge (Inglesfield and 
Stott 1980, Jensen and Walker 1988). This suggests using ~ ( p ,  r,(z))  = 1 for z +  
instead of ~ ( p ,  rs (z ) )  = A(p)r : (z ) ,  corresponding to the bulk material. The advantage 
of the MDA in comparison with the LDA consists in averaging electron-positron cor- 
relations over electronic states: the MDA requires only the total electron distribution on 
the positron while the LDA separates particular electronic states. It should be stressed 
here that determination of the total local annihilation rate T(r )  is much easier than 
determination of the partial local annihilation rates, E @ ,  r ) .  An attempt to calculate the 
electron distribution on the positron in the neighbourhood of an A1 surface, giving the 
values of the local annihilation rates, was made by Inglesfield and Stott (1980) and by 
Jensen and Walker (1988). 

In the present work a new formula for calculating surface ACAR spectra is suggested. 
This new approach is consistent with definition (4) and allows one to average electron- 
positron correlations over electronic states k ,  making it convenient for use. If the 
electronic screening charge distribution on the positron located at r ,  Ap(r) ,  is known 
(Jensen and Walker 1988), we suggest calculating surface ACAR spectra according to the 
formula 

N(PA 

N ( p )  = I dr  1 dr, exp[ip ( r  - 
k m c  

(9) 

Formula (9) is obtained from (4) by replacing f ( r ,  k)f(rl, k)  by 1 + A p ( R ) / p ( R )  and 
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therefore is consistent with definition (4). The ACAR spectra obtained using (9) provide 
useful information about the electronic structure of the surface investigated. Replacing 
?)k(r) in (9) by plane waves eik'rand the total Fermi momentum kF by the local one kF(R),  
we simply switch to MDA formula (8). 

In order to make (9) more convenient for numerical calculations, an approximate 
form could be used: 

N ( p )  = 1 1 dr e"rq+ ( r ) q k ( r )  g1 + A p ( r ) / p ( r )  1 '. (9a) 
kocc 

It should be mentioned here that expression (sa) is always convergent (even if electron- 
positron correlations corresponding to the bulk material are used), because 1 vk(r) l2/p(r)  
is limited by unity for any r,  and ?)+(r) is (squared) integrable while /eiP"/ = 1. 

The results obtained from the LDA-MDA formula (sa) with the electronic screening 
charge distribution A p ( r )  (appropriate for the surface problem) calculated in the way 
proposed by Jensen and Walker (1988) are presented in a subsequent publication 
(Rubaszek and Lach 1988). 

I am grateful to Dr Mojmir Sob for helpful discussions and remarks. 
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